SIMT Intrinsics
For the CUDA backend, Taichi supports warp-level and block-level intrinsics, which are needed for writing high-performance SIMT kernels. 你可以在 Taichi 中以类似于 CUDA 内核中的用法 使用它们。 目前支持以下函数:
运算 | 映射的 CUDA 内建函数 |
---|---|
ti.simt.warp.all_nonzero | __all_sync |
ti.simt.warp.any_nonzero | __any_sync |
ti.simt.warp.unique | __uni_sync |
ti.simt.warp.ballot | __ballot_sync |
ti.simt.warp.shfl_sync_i32 | __shfl_sync |
ti.simt.warp.shfl_sync_f32 | __shfl_sync |
ti.simt.warp.shfl_up_i32 | __shfl_up_sync |
ti.simt.warp.shfl_up_f32 | __shfl_up_sync |
ti.simt.warp.shfl_down_i32 | __shfl_down_sync |
ti.simt.warp.shfl_down_f32 | __shfl_down_sync |
ti.simt.warp.shfl_xor_i32 | __shfl_xor_sync |
ti.simt.warp.match_any | __match_any_sync |
ti.simt.warp.match_all | __match_all_sync |
ti.simt.warp.active_mask | __activemask |
ti.simt.warp.sync | __syncwarp |
See Taichi's API reference for more information on each function.
Here is an example of performing data exchange within a warp in Taichi:
a = ti.field(dtype=ti.i32, shape=32)
@ti.kernel
def foo():
ti.loop_config(block_dim=32)
for i in range(32):
a[i] = ti.simt.warp.shfl_up_i32(ti.u32(0xFFFFFFFF), a[i], 1)
for i in range(32):
a[i] = i * i
foo()
for i in range(1, 32):
assert a[i] == (i - 1) * (i - 1)