跳转至主要内容
Version: v1.5.0

稀疏矩阵

Sparse matrices are frequently involved in solving linear systems in science and engineering. Taichi provides useful APIs for sparse matrices on the CPU and CUDA backends.

To use sparse matrices in Taichi programs, follow these three steps:

  1. Create a builder using ti.linalg.SparseMatrixBuilder().
  2. Call ti.kernel to fill the builder with your matrices' data.
  3. Build sparse matrices from the builder.
WARNING

The sparse matrix feature is still under development. 以下是一些限制:

  • The sparse matrix data type on the CPU backend only supports f32 and f64.
  • The sparse matrix data type on the CUDA backend only supports f32.

Here's an example:

import taichi as ti
arch = ti.cpu # or ti.cuda
ti.init(arch=arch)

n = 4
# step 1: create sparse matrix builder
K = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=100)

@ti.kernel
def fill(A: ti.types.sparse_matrix_builder()):
for i in range(n):
A[i, i] += 1 # Only += and -= operators are supported for now.

# step 2: 填充 builder
fill(K)

print(">>>> K.print_triplets()")
K.print_triplets()
# outputs:
# >>>> K.print_triplets()
# n=4, m=4, num_triplets=4 (max=100)(0, 0) val=1.0(1, 1) val=1.0(2, 2) val=1.0(3, 3) val=1.0

# step 3: 由builder创建稀疏矩阵.
A = K.build()
print(">>>> A = K.build()")
print(A)
# outputs:
# >>>> A = K.build()
# [1, 0, 0, 0]
# [0, 1, 0, 0]
# [0, 0, 1, 0]
# [0, 0, 0, 1]

目前稀疏矩阵支持如+, -, *, @ 这些基本操作和转置操作.

print(">>>> Summation: C = A + A")
C = A + A
print(C)
# outputs:
# >>>> Summation: C = A + A
# [2, 0, 0, 0]
# [0, 2, 0, 0]
# [0, 0, 2, 0]
# [0, 0, 0, 2]

print(">>>> Subtraction: D = A - A")
D = A - A
print(D)
# outputs:
# >>>> Subtraction: D = A - A
# [0, 0, 0, 0]
# [0, 0, 0, 0]
# [0, 0, 0, 0]
# [0, 0, 0, 0]

print(">>>> Multiplication with a scalar on the right: E = A * 3.0")
E = A * 3.0
print(E)
# outputs:
# >>>> Multiplication with a scalar on the right: E = A * 3.0
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]

print(">>>> Multiplication with a scalar on the left: E = 3.0 * A")
E = 3.0 * A
print(E)
# outputs:
# >>>> Multiplication with a scalar on the left: E = 3.0 * A
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]

print(">>>> Transpose: F = A.transpose()")
F = A.transpose()
print(F)
# outputs:
# >>>> Transpose: F = A.transpose()
# [1, 0, 0, 0]
# [0, 1, 0, 0]
# [0, 0, 1, 0]
# [0, 0, 0, 1]

print(">>>> Matrix multiplication: G = E @ A")
G = E @ A
print(G)
# outputs:
# >>>> Matrix multiplication: G = E @ A
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]

print(">>>> Element-wise multiplication: H = E * A")
H = E * A
print(H)
# outputs:
# >>>> Element-wise multiplication: H = E * A
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]

print(f">>>> Element Access: A[0,0] = {A[0,0]}")
# outputs:
# >>>> Element Access: A[0,0] = 1.0

稀疏线性求解器

您可能想要使用稀疏矩阵解决一些线性方程。 那么以下步骤可能会有帮助:

  1. 使用 ti.linalg.SparseSolver(solver_type, ordering) 创建一个solver。 Currently, the factorization types supported on CPU backends are LLT, LDLT, and LU, and supported orderings include AMD and COLAMD. The sparse solver on CUDA supports the LLT factorization type only.
  2. 使用 solver.analyze_pattern(Sparse_matrix)solver.factorize(Sparse_matrix) 分析和因式分解您想要求解的稀疏矩阵。
  3. Call x = solver.solve(b), where x is the solution and b is the right-hand side of the linear system. On CPU backends, x and b can be NumPy arrays, Taichi Ndarrays, or Taichi fields. On the CUDA backend, x and b must be Taichi Ndarrays.
  4. 调用 solver.info() 来检查求解过程是否成功。

下面是一个完整的示例:

import taichi as ti

arch = ti.cpu # or ti.cuda
ti.init(arch=arch)

n = 4

K = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=100)
b = ti.ndarray(ti.f32, shape=n)

@ti.kernel
def fill(A: ti.types.sparse_matrix_builder(), b: ti.template(), interval: ti.i32):
for i in range(n):
A[i, i] += 2.0

if i % interval == 0:
b[i] += 1.0

fill(K, b, 3)

A = K.build()
print(">>>> Matrix A:")
print(A)
print(">>>> Vector b:")
print(b)
# outputs:
# >>>> Matrix A:
# [2, 0, 0, 0]
# [0, 2, 0, 0]
# [0, 0, 2, 0]
# [0, 0, 0, 2]
# >>>> Vector b:
# [1. 0. 0. 1.]
solver = ti.linalg.SparseSolver(solver_type="LLT")
solver.analyze_pattern(A)
solver.factorize(A)
x = solver.solve(b)
isSuccess = solver.info()
print(">>>> Solve sparse linear systems Ax = b with the solution x:")
print(x)
print(f">>>> Computation was successful?: {isSuccess}")
# outputs:
# >>>> Solve sparse linear systems Ax = b with the solution x:
# [0.5 0. 0. 0.5]
# >>>> Computation was successful?: True

示例

请查看我们的两个演示示例:

  • Stable fluid: 使用 稀疏 Laplacian 矩阵来求解 Poisson 压力方程的一个二维流体模拟项目。
  • Implicit mass spring: 一个用稀疏矩阵求解线性系统的二维布料仿真项目。
本文有帮助吗?