稀疏矩阵
Sparse matrices are frequently involved in solving linear systems in science and engineering. Taichi provides useful APIs for sparse matrices on the CPU and CUDA backends.
To use sparse matrices in Taichi programs, follow these three steps:
- Create a
builder
usingti.linalg.SparseMatrixBuilder()
. - Call
ti.kernel
to fill thebuilder
with your matrices' data. - Build sparse matrices from the
builder
.
WARNING
The sparse matrix feature is still under development. 以下是一些限制:
- The sparse matrix data type on the CPU backend only supports
f32
andf64
. - The sparse matrix data type on the CUDA backend only supports
f32
.
import taichi as ti
arch = ti.cpu # or ti.cuda
ti.init(arch=arch)
n = 4
# step 1: create sparse matrix builder
K = ti.linalg.SparseMatrixBuilder(n, n, max_num_triplets=100)
@ti.kernel
def fill(A: ti.types.sparse_matrix_builder()):
for i in range(n):
A[i, i] += 1 # Only += and -= operators are supported for now.
# step 2: 填充 builder
fill(K)
print(">>>> K.print_triplets()")
K.print_triplets()
# outputs:
# >>>> K.print_triplets()
# n=4, m=4, num_triplets=4 (max=100)(0, 0) val=1.0(1, 1) val=1.0(2, 2) val=1.0(3, 3) val=1.0
# step 3: 由builder创建稀疏矩阵.
A = K.build()
print(">>>> A = K.build()")
print(A)
# outputs:
# >>>> A = K.build()
# [1, 0, 0, 0]
# [0, 1, 0, 0]
# [0, 0, 1, 0]
# [0, 0, 0, 1]
目前稀疏矩阵支持如+
, -
, *
, @
这些基本操作和转置操作.
print(">>>> Summation: C = A + A")
C = A + A
print(C)
# outputs:
# >>>> Summation: C = A + A
# [2, 0, 0, 0]
# [0, 2, 0, 0]
# [0, 0, 2, 0]
# [0, 0, 0, 2]
print(">>>> Subtraction: D = A - A")
D = A - A
print(D)
# outputs:
# >>>> Subtraction: D = A - A
# [0, 0, 0, 0]
# [0, 0, 0, 0]
# [0, 0, 0, 0]
# [0, 0, 0, 0]
print(">>>> Multiplication with a scalar on the right: E = A * 3.0")
E = A * 3.0
print(E)
# outputs:
# >>>> Multiplication with a scalar on the right: E = A * 3.0
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]
print(">>>> Multiplication with a scalar on the left: E = 3.0 * A")
E = 3.0 * A
print(E)
# outputs:
# >>>> Multiplication with a scalar on the left: E = 3.0 * A
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]
print(">>>> Transpose: F = A.transpose()")
F = A.transpose()
print(F)
# outputs:
# >>>> Transpose: F = A.transpose()
# [1, 0, 0, 0]
# [0, 1, 0, 0]
# [0, 0, 1, 0]
# [0, 0, 0, 1]
print(">>>> Matrix multiplication: G = E @ A")
G = E @ A
print(G)
# outputs:
# >>>> Matrix multiplication: G = E @ A
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]
print(">>>> Element-wise multiplication: H = E * A")
H = E * A
print(H)
# outputs:
# >>>> Element-wise multiplication: H = E * A
# [3, 0, 0, 0]
# [0, 3, 0, 0]
# [0, 0, 3, 0]
# [0, 0, 0, 3]
print(f">>>> Element Access: A[0,0] = {A[0,0]}")
# outputs:
# >>>> Element Access: A[0,0] = 1.0